
The Comparison of Several Regression Algorithms

Name: Pingfan Tang ID: 00921446

1. Problem and Data

In this final project report, I will compare several regression algorithms by using them to explore "Com-
munities and Crime Data Set". I tried four basic algorithms: linear least squares regression, ridge regression,
principal component analysis regression and Lasso regression, and used Lasso regression to find some impor-
tant attributes which have a close relationship with the crime rate in a community. Moreover, I made a little
extension to Theil-Sen estimator, and use it to carry out regression in the two dimensional space.

There are 1994 instances in the data set, and I use the first 1690 instances to build the model and use the
remaining 304 instances to test the model. There are 122 predictive attributes in the original data, and I delete
23 attributes in which the data have missing values. So, in the processed data there are 99 predictive attributes,
and one goal attribute which is the "total number of violent crimes per 100000 population".

Suppose the 1994 instances are in a set X = {(x1, y1), (x2, y2), · · · , (x1994, y1994)} where xi is the vector
containing the value of 99 predictive attributes of i − th instance and yi is the value of the goal attribute of
i− th instance. We define

X1 ={(x1, y1), · · · , (x338, y338)},

X2 ={(x339, y339), · · · , (x676, y676)},

X3 ={(x677, y677), · · · , (x1014, y1014)},

X4 ={(x1015, y1015), · · · , (x1352, y1352)},

X5 ={(x1353, y1353), · · · , (x1690, y1690)},

X6 ={(x1691, y1691), · · · , (x1994, y1994)}.

(1)

where |X1| = |X2| = |X3| = |X4| = |X5| = 338 and |X6| = 304.

2. Comparison of Four Regression Algorithms

For ridge regression, the goal is to minimize∑
xi

(xTi a− yi)2 + s‖a‖22. (2)

For Lasso regression, the goal is to minimize∑
xi

(xTi a− yi)2 such that ‖a‖1 ≤ t. (3)

We use cross validation to choose parameters s and t in (2) and (3). For fixed s or t, we use X − X6 − Xi

(i ∈ {1, 2, 3, 4, 5}) to carry out the regression (we first use a transform to make the mean of the training data
become zero), and then use Xi to compute the Error_square ei. For example, we use X − X6 − X1 to do
regression, and then use the result and X1 to compute the estimate value of goal attribute {ŷ1, · · · , ŷ338}, and
e1 =

∑338
i=1(ŷi − yi)2. Thus, for each s or t we can obtain an error e = 1

5

∑5
i=1 ei. We choose s and t that can

minimize this error.
For ridge regression, the relationship between e and s is shown in Figure 1 (a), and we choose regularization

parameter s = 1.1, because when s = 1.1 the error e achieves its minimum value. For Lasso regression, the
relationship between e and t is shown in Figure 1 (b), and we choose the parameter t = 5.1, because when
t = 5.1 the error e achieves its minimum value. We will also consider the case t = 1.5, because when t = 1.5 the
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error is close to the minimum value and the solution is sparse, so we can know which attributes are important
to the goal attribute.
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(b) The relationship between error e and parameter t.
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Figure 1. The relationship between error e and regularization parameter.

After fixing the parameter s and t, we use X−X6 as the data to carry out regression and use X6 to compute
the error for different algorithms. Suppose for those instances in X6, the estimated value of goal attribute is
{ŷ1691, ŷ1692, · · · , ŷ1994}. We define the following three errors to compare the performance of different algorithms.

Error_max = max
1691≤i≤1994

{|yi − ŷi|}, Error_square =
( 1994∑
i=1691

(yi − ŷi)2
) 1

2 , Error_mean =
1

304

1994∑
i=1691

|yi − ŷi|.

The running result of three algorithms is shown in Table 1.

Table 1. The error of different algorithms.

Error_max Error_square Error_mean
Least Square Regression 0.5986 2.2880 0.0923
Ridge Regression (s=1.1) 0.5869 2.2373 0.0899
Lasso Regression (t=5.1) 0.5698 2.2358 0.0896
Lasso Regression (t=1.5) 0.5372 2.2055 0.0884
PCA Regression 17.7278 80.1834 3.6403

From Table 1, we can see Lasso regression works better than ridge regression and least square regression,
and PCA regression is not applicable for this question, because it tries to minimizes the perpendicular distances
from the data to the fitted model (a hyperplane), which means the error in the goal attribute may be very large.

3. Something Interesting Found in Data

In Table 1, when t = 1.5 the Lasso regression brings us the best result. Suppose when t = 1.5 the model built
by Lasso regression is y = xTa + b, then only 25 elements in vector a are nonzero. Obviously, these nonzero
elements are the coefficients of those important attributes. We choose 6 attributes with the largest absolute
coefficients, and show them in Table 2. When the coefficient is greater than zero, it means this attribute is
positively correlated to the crime rate in a community; when the coefficient is less than zero, it means this
attribute is negatively correlated to the crime rate in a community. Therefore, Table 2 indicates that the
stability and harmony of family play an important role in reducing the crime rate of a community.

http://www.mathworks.com/help/stats/examples/fitting-an-orthogonal-regression-using-principal-components-analysis.html
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Table 2. Important Attribute

Attribute Coefficient
percentage of kids in family housing with two parents -0.2095
percentage of kids born to never married 0.1870
percentage of population that is African American 0.1753
percentage of males who are divorced 0.1507
percent of persons in dense housing (more than 1 person per room) 0.1324
number of vacant households 0.1019

4. Theil-Sen Estimator in Two Dimensional Space

Given a data set S = {pi | pi = (x1i , x
2
i , yi) ∈ R3, i = 1, 2, · · · , n}, we try to find a plane y = a1x

1 + a2x
2 + b

to fit these data. Like Theil-Sen estimator in R1, for any set of three points {pi, pj , pk} ⊂ S, if pi, pj , pk are not
on the same line, we compute the normal vector of the plane passing these three points, and then take the L1

median of these normal vectors, and then compute the offset b. The detail of this process is given in Algorithm
1.

Algorithm 1 Theil-Sen Estimator in Two Dimensional Space

Input: S = {pi | pi = (x1i , x
2
i , yi) ∈ R3, i = 1, 2, · · · , n}

Set A = ∅, S̃ = {{pi, pj , pk} ⊂ S| pi, pj , pk are not on the same line}
for each {pi, pj , pk} ∈ S̃ do
γ1 = (x2i − x2k)(yi − yj)− (x2i − x2j )(yi − yk)
γ2 = (x1i − x1j )(yi − yk)− (x1i − x1k)(yi − yj)
γ3 = (x1i − x1k)(x2i − x2j )− (x1i − x1j )(x2i − x2k)
if γ3 6= 0 then
a1 = γ1

γ3
, a2 = γ2

γ3

A = A ∪ {(a1, a2)}
(a1, a2) = L1 median of A
b = median{yi + a1x

1
i + a2x

2
i |(x1i , x2i , yi) ∈ S}

return y = −a1x1 − a2x2 + b

To test Theil-Sen estimator in the two dimensional space, we randomly generate a set of 150 points D =

{(x1i , x2i ) | i = 1, 2, · · · , 150} in the region [0, 10]× [0, 10] ⊂ R2 according to uniform distribution, and then for
each point (x1i , x2i ) ∈ X we compute

yi = 0.5x1i + 1.6x2i + 6 + ri (4)

where ri ∈ [−2, 2] is a random number which obeys uniform distribution.
To verify the robustness of Theil-Sen estimator, we introduce three outliers yα1 = y1 + α, yα2 = y2 + α and

yα3 = y3 + α. We use D1 = {(x1i , x2i )|i = 1, 2, · · · , 100}, yα1 = {yα1 , yα2 , yα3 , y4, y5, y6, · · · , y100} to carry out
regression, and use D2 = {(x1i , x2i )|i = 101, 102, · · · , 150}, y2 = {y101, y102, · · · , y150} to test the result. For
least square regression and Theil-Sen estimator, the relationship between Error_square on test data and the
value of α is shown in Figure 2. From this figure,we can see as α increases the Error_square of the result
obtained from least square regression increases dramatically, but the Error_square of the result obtained from
Theil-Sen estimator is almost a constant. This implies the Theil-Sen estimator is more robust than the least
square regression.

Figure 3 gives a pictorial description of the results obtained from these two methods. When α = 100, the
plane obtained from Theil-Sen estimator is y = 0.4704x1 + 1.6217x2 + 5.0561 which is close to (4). The plane
y = 0.4704x1 + 1.6217x2 + 5.0561 and training data X1,y100

1 are shown in Figure 3 (a), where the red points
are outliers. For α = 100, the plane obtained from least square regression is y = 0.4967x1 +0.6634x2 +12.5094,
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Figure 2. The relationship between Error_square and α = 100.

which is shown in Figure 3 (b) with training data. From this figure, we can clearly see, due to the influence of
three red outliers, the plane apparently deviates from the blue points.

Figure 3. The plane obtained from two algorithms.

5. Conclusion

(1) The performance of a regression algorithm on the training data may be very well, but the model obtained
from this algorithm perhaps can not work well on the test data. This is the phenomenon of over fitting.
Actually, in "Communities and Crime Data Set", many attributes have no much relationship with the goal
attribute "crime rate". Least square regression considers all these irrelevant attributes, so it cannot give a good
prediction on the test data. On the contrary, ridge regression and Lasso regression restrict the norm of the
solution, so sometimes they can work better. Moreover, we can use Lasso regression to find which attributes
have the most important influence on the goal attribute.

(2) Compared with least square regression which is unstable to outliers, Theil-Sen estimator is more robust.
It works well in two dimensional space. Theoretically, it can be generalized to high dimensional space, but for
n instances in Rd we need to compute the normal vectors of

(
n
d+1

)
hyperplanes, which is impractical for large n

and d. Perhaps, we can find a method to only choose those representative hyperplanes, and then compute their
normal vetoers to obtain a robust and practical regression algorithm in high dimensional space.
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